Face Vert Edge Gold- Geo- Plat- Archi- Spher- Face berg desic onic median icity type 4 4 6 * * .671 3 Tetrahedron 6 8 12 * .806 4 Cube 8 6 12 * * .846 3 Octahedron 8 12 18 * .775 6 3 Truncated tetrahedron 10 16 24 12 8 18 * 3 Triakistetrahedron 12 20 30 * * .910 5 Dodecahedron 14 12 24 * .905 3 4 Cuboctahedron + 14 24 36 * .910 6 4 Truncated octahedron 14 24 36 * .849 Truncated cube + 16 10 24 * 3 18 32 48 20 12 30 * * .939 3 Icosahedron 20 36 54 24 14 36 * 3 26 24 48 * .954 4 3 Rhombicuboctahedron. Cantellated cube 26 48 72 * .943 Truncated cuboctahedron 30 32 60 Rhombic triacontahedron. Catalan solid 32 18 48 * 3 32 30 60 * .951 5 3 Icosidodecahedron 32 60 90 * .926 3 10 Truncated dodecahedron 32 60 90 32 90 60 * * .967 6 5 Truncated icosahedron 34 64 96 36 20 54 * 3 38 24 60 * .965 3 4 Snub cube 38 72 108 42 80 120 * 6 5 Truncated rhombic triacontahedron 50 96 144 52 100 150 60 32 90 * 3 62 60 120 * .979 Rhombicosidodecahedron 62 120 180 * .970 Truncated icosidodecahedron 64 34 96 * 3 92 60 150 * .982 Snub dodecahedron 66 128 192 72 38 108 * 3 72 140 210 * 74 144 216 80 42 120 * 3 Pentakis icosidodecahedron 92 180 270 * 6 5 96 50 144 * 3 100 52 150 * 3 102 200 300 * 122 * 128 66 192 * 3 140 72 210 * 3 144 74 216 * 3 162 * Euler formula: Faces + Vertices - Edges = 2
A Goldberg polyhedron has faces that are either pentagons or hexagons. There are always 12 pentagons. The Goldberg polyhedra with ≤162 faces are shown above.
Face Vert Edge Class Spher- icity 12 20 30 1 .910 32 60 90 2 .967 42 80 120 1 72 140 210 3 92 180 270 1 122 240 320 2 132 260 390 3 162 320 480 1
Truncation Shave vertices Cantellation Shave vertices and edges Chamfer Shave edges Runcination Shave faces Rectification Truncation down to the to the midpoint of the edges
Catalan solids are the duals of Archimedian solids.